首页> 外文OA文献 >Sub-50 nm Scale to Micrometer Scale Soft Lithographic Patterning of Functional Materials
【2h】

Sub-50 nm Scale to Micrometer Scale Soft Lithographic Patterning of Functional Materials

机译:功能材料的亚50纳米尺度到微米尺度的软光刻图案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This PhD thesis addresses two major issues: 1) Fabricating nanometer-scale patterns of functional materials, 2) Extending the applicability of soft lithographic processes to a wide range of functional materials on conventional silicon substrates and flexible plastic substrates. This thesis describes novel soft lithographic processes, with which it is possible to fabricate sub-50 nanometer to micrometer length scale patterns of a wide range of functional materials, including metals, nanoparticles, organosilane molecules, nanowires, semiconducting materials and conducting polymers on silicon and flexible plastic substrates. Chapter 2 describes the patterning of oxide materials in sub-50 nm scale to micrometer scale using transfer printing metal loaded water soluble polymers. The process is a simple and low cost approach to pattern a wide range of oxide materials on the sub -100 nanometer scale that have potential applications in the fabrication of device structures. Chapter 3 introduces a method to pattern organosilane molecules on silicon substrates on the nanometer and micrometer scale. The process is a time-controlled approach which uses the phenomena of geometry dominated condensation of organosilane molecules from a vapor phase to generate high-resolution patterns. PDMS stamps of large dimensions can be used to fabricate patterns of much smaller dimensions. Chapter 4 extends the application possibility of the process described in the previous chapter to pattern inorganic functional materials on the nanometer to micrometer scale. The chapter shows that the gas phase pattern deposition of organosilane molecules is fully controllable. Also self-assembled molecular thin films of mercaptosilane molecules were used as thin resists for the electrodeposition of metallic and semiconducting materials. Chapter 5 further extends the application range of the process described in chapter 3. Sequential deposition of different organosilane molecules on silicon substrate is used to fabricate substrates with multiple chemical functionalities. Multifunctional multi-length scale surfaces have been realized on the micrometer and nanometer scale. The potential application of organosilane patterns as resists for atomic layer deposition (ALD) and as template for site-selective adsorption of nanoparticles has been demonstrated. Chapter 6 describes a novel process to pattern octadecanethiol (ODT) SAMs on gold substrate by channel diffused plasma etching. The patterned SAMs were used as templates for electrodeposition, electroless deposition and solution phase deposition of a wide range of functional materials (Ni, Ag, ZnO, and ZnO nanowires) on the nanometer and micrometer scale. Chapter 7 describes the potential application of channel diffused plasma surface modification of plastic substrates like polycarbonate (PC), PDMS and polyethylene terephthalate (PET) to create a hydrophilic-hydrophobic contrast on these surfaces. After surface modification, subsequent material deposition processes such as electroless deposition, solution phase deposition, site selective de-wetting and site selective adsorption were used to obtain patterns of functional materials such as ZnO, ZnO nanowires, Ag , TiO2, conducting polymer (PEDOT:PSS) and Ag nanoparticles Chapter 8 describes a novel process of electrodeposition in capillaries. The process enables bottomup micro and nano patterning of metallic and semiconducting materials by electrodeposition of an electrolyte solution inside PDMS capillaries in contact with a substrate. The thesis closes with conclusions and outlook in chapter 9.
机译:本博士论文解决了两个主要问题:1)制作功能材料的纳米级图案; 2)将软光刻工艺的适用性扩展到常规硅基板和柔性塑料基板上的各种功能材料。本论文描述了新颖的软光刻工艺,利用该工艺可以制造各种功能材料的小于50纳米至微米长度尺度的图案,这些功能材料包括金属,纳米粒子,有机硅烷分子,纳米线,半导体材料以及在硅和硅上的导电聚合物。柔性塑料基材。第2章介绍了使用转移印刷负载金属的水溶性聚合物在50 nm到微米范围内对氧化物材料进行图案化的方法。该工艺是一种简单且低成本的方法,可以在亚-100纳米级别上对各种氧化物材料进行构图,这些材料在器件结构的制造中具有潜在的应用前景。第三章介绍了一种在纳米和微米尺度上在硅基板上对有机硅烷分子进行图案化的方法。该方法是一种时间控制的方法,它利用几何学上占主导地位的有机硅烷分子从汽相缩合的现象来产生高分辨率图案。大尺寸的PDMS压模可用于制作小得多的图案。第4章扩展了上一章中描述的方法的应用可能性,以在纳米到微米尺度上对无机功能材料进行图案化。本章表明有机硅烷分子的气相图案沉积是完全可控的。巯基硅烷分子的自组装分子薄膜也用作电沉积金属和半导体材料的薄抗蚀剂。第5章进一步扩展了第3章中描述的方法的应用范围。使用不同的有机硅烷分子在硅基板上依次沉积来制造具有多种化学功能的基板。多功能,多尺度尺度的表面已经实现了微米和纳米尺度。已经证明了有机硅烷图案作为用于原子层沉积(ALD)的抗蚀剂和作为纳米颗粒的位置选择性吸附的模板的潜在应用。第6章介绍了一种通过通道扩散等离子体蚀刻在金基底上形成十八烷硫醇(ODT)SAM的新方法。图案化的SAM被用作模板,用于在纳米和微米尺度上对各种功能材料(Ni,Ag,ZnO和ZnO纳米线)进行电沉积,化学沉积和溶液相沉积。第7章介绍了对塑料基材(如聚碳酸酯(PC),PDMS和聚对苯二甲酸乙二醇酯(PET))进行通道扩散等离子体表面改性以在这些表面上形成亲水-疏水对比的潜在应用。表面改性后,随后的材料沉积过程(如化学沉积,溶液相沉积,定点除湿和定点吸附)用于获得功能材料的图案,例如ZnO,ZnO纳米线,Ag,TiO2,导电聚合物(PEDOT: PSS和Ag纳米粒子第8章介绍了在毛细管中进行电沉积的新方法。该工艺通过将电解质溶液电沉积在与基材接触的PDMS毛细管内部,实现了金属和半导体材料的自下而上的微米和纳米图案化。本文在第九章结束时给出了结论和展望。

著录项

  • 作者

    George, A.;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号